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1 Introduction

Biological wastewater treatment using anaerobic di-
gestion is a process, where microorganisms decom-
pose the organic compounds inside the effluent.
The goal is to reduce the pollutant concentration
in the outlet stream below a specified value, usu-
ally fixed by environmental and safety rules. At
the same time this process can also produce valu-
able energy (methane). The operation of such pro-
cesses poses a number of practical problems, since
anaerobic digestion is known to become easily un-
stable, see e. g. [2], [13], [16], [17] and the references
therein.

In the recent years the dynamic modeling of
anaerobic digestion has become an active research
area. This is due to the fact that a mathemat-
ical model of the plant can be used as a power-
ful tool to simulate different operating, control and
optimization strategies [4], [18], [22]. The design
of such models should find a “trade-off” between
model complexity and mathematical investigation
of the model, especially for control purposes [13].

One of the main drawbacks in the modeling and
control of anaerobic digestion lies in the difficulty
to monitor on-line the key biological variables of
the process and to obtain explicit analytic expres-
sions for the growth rate functions [21]. Thus deve-
loping control systems only based on simple mea-
surements and general assumptions on the specific
growth rates, that guarantee stability of the pro-
cess, is of primary importance.

Practical experiments show that feedback con-

trol is a very appropriate tool for asymptotic sta-
bilization in the case of model uncertainties. Such
a feedback is proposed in [17] for the so-called “sin-
gle substrate/single biomass” model under general
assumptions on the growth rate functions. This ap-
proach is further developed in [8].

The present paper considers two approaches for
asymptotic stabilization of a four-dimensional non-
linear control system [2], [5], [13], [14], [16], that
models a wastewater treatment process. The first
approach is based on adaptive feedback stabiliza-
tion, and the second on a state feedback (non-
adaptive) one. In both cases the closed-loop sys-
tem is globally stabilized towards a previously cho-
sen operating (reference) point. Thereby we don’t
assume any analytical expressions for the specific
growth rates to be given. Moreover, both feedback
control laws depend on on-line measurements only.

The paper is organized as follows. Section 2
presents shortly the dynamic model of the waste-
water treatment process. The adaptive asymptotic
stabilization of the dynamic system towards a pre-
viously chosen operating point is studied in Sec-
tion 3. Section 4 considers the non-adaptive sta-
bilization problem for the same model. In order
to prove that the closed-loop system is asymptot-
ically stable, suitable Lyapunov-like functions are
constructed explicitly in both cases. Computer sim-
ulations are reported in Section 5 to illustrate and
to compare the theoretical results of the two ap-
proaches. There, the robustness of the two feedback
control laws under model uncertainties is demon-
strated as well.
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2 Model Description
We consider a model of an anaerobic digestion pro-
cess, based on two main reactions (cf. e. g. [2], [5],
[13], [14], [16]):

(a) acidogenesis, where the organic substrate is
degraded into volatile fatty acids (VFA) by acido-
genic bacteria;

(b) methanogenesis, where VFA are degraded
into methane CH4 and carbon dioxide CO2 by
methanogenic bacteria.

The mass balance model in a continuously
stirred tank bioreactor is described by the following
nonlinear system of ordinary differential equations

ds1
dt

= u(si1 − s1)− k1 µ1 x1 (1)

dx1
dt

= (µ1 − αu)x1 (2)

ds2
dt

= u(si2 − s2) + k2 µ1x1 − k3 µ2 x2 (3)

dx2
dt

= (µ2 − αu)x2 (4)

with output

Q = k4µ2(s2)x2. (5)

The state variables s1, s2 and x1, x2 denote sub-
strate and biomass concentrations, respectively: s1
represents the organic substrate, characterized by
its chemical oxygen demand (COD), s2 denotes the
volatile fatty acids (VFA), x1 and x2 are the acido-
genic and methanogenic bacteria respectively. The
parameter α ∈ (0, 1) represents the proportion of
bacteria that are affected by the dilution; α = 0
and α = 1 correspond to an ideal fixed bed reac-
tor and to an ideal continuous stirred tank reactor,
respectively (cf. [1], [2], [5], [13], [20]).

We assume that the methane flow rate Q is the
measurable output.

The input substrate concentrations si1 and si2 are
assumed to be constant. The dilution rate u is con-
sidered as a control input.

The definition of the model parameters is given
in Table 1. There the constants m1, m2, ks1 , ks2
and kI are related to the particular expressions of
the specific growth rate functions µ1(s1) and µ2(s2),
which are used later in Section 5.

The functions µ1 and µ2 model the specific
growth rates of the microorganisms. We do not
assume to know explicit expressions for the latter,
we only impose the following general assumptions
on µ1 and µ2:

Assumption A1. µj(sj) is defined for sj ∈
[0,+∞), µj(0) = 0, µj(sj) > 0 for sj > 0; µj(sj)

is continuously differentiable and bounded for all
sj ∈ [0,+∞), j = 1, 2.

Table 1: Definition of the model parameters

s1 concentration of chemical oxygen
demand (COD) [g/l]

s2 concentration of volatile fatty
acids (VFA) [mmol/l]

x1 concentration of acidogenic
bacteria [g/l]

x2 concentration of methanogenic
bacteria [g/l]

u dilution rate [day−1]
si1 influent concentration s1 [g/l]
si2 influent concentration s2 [mmol/l]
k1 yield coefficient for COD

degradation [g COD/(g x1)]
k2 yield coefficient for VFA

production [mmol VFA/(g x1)]
k3 yield coefficient for VFA

consumption [mmol VFA/(g x2)]
k4 coefficient [l2/g]
m1 maximum acidogenic biomass

growth rate [day−1]
m2 maximum methanogenic biomass

growth rate [day−1]
ks1 saturation parameter associated

with s1 [g COD/l]
ks2 saturation parameter associated

with s2 [mmol VFA/l]
kI inhibition constant associated

with s2 [(mmol VFA/l)1/2]
α proportion of dilution rate

reflecting process heterogeneity
Q methane gas flow rate

3 Adaptive Asymptotic Stabiliza-
tion
In this section we shall construct an adaptive sta-
bilizing controller of (1)–(4). First we make the
following assumption:

Assumption A2. The biological oxygen de-

mand (BOD)
k2
k1

s1 + s2 is on-line measurable.

For the practical application it is worth to note
that BOD is online measurable. This fact is dis-
cussed in details in [5]. The interested reader can
find an overview of existing observers in [1], [2].
Information about more specialized biosensors is
given in [6] and the references therein.
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Let us fix an operating (reference) point s̄,

s̄ ∈ (0, si) with si :=
k2
k1

si1 + si2. (6)

Assumption A3: There exists a point s̄1 such
that

µ1(s̄1) = µ2

(
s̄− k2

k1
s̄1

)
> 0, s̄1 ∈

(
0, si1

)
.

Assumption A3 is called regulability [13] of the
system: it means that there exists (at least one)
nontrivial equilibrium of the system (1)–(4), corre-
sponding to a constant value of the dilution rate
ū > 0. Define further

s̄2 = s̄− k2
k1

s̄1, x̄1 =
si1 − s̄1
αk1

,

x̄2 =
si2 − s̄2 + αk2x̄1

αk3
=

si − s̄

αk3
.

(7)

It is straightforward to see that the point

ζ̄ := (s̄1, x̄1, s̄2, x̄2)

is an equilibrium point for the system (1)–(4). Our
goal is to construct an adaptive feedback law to
asymptotically stabilize the system (1)–(4) to ζ̄.

Denoting s :=
k2
k1

s1 + s2, we define the sets

Ω0 = {(s1, x1, s2, x2)|
s1 > 0, x1 > 0, s2 > 0, x2 > 0} ,

Ω1 = {(s1, x1, s2, x2)|

s1 + k1x1 ≤
si1
α
, s+ k3x2 ≤

si

α

}
,

Ω2 =

{(
s1, x1, s̄−

k2
k1

s1, x̄2

)
|

0 < s1 <
k1
k2

s̄, x1 > 0

}
,

Ω = Ω0 ∩ Ω1.

Assumption A4: Let the inequality µ′
1(s1) +

k2
k1

·µ′
2

(
s̄− k2

k1
s1

)
> 0 be satisfied on the set Ω∩Ω2.

Assumption A4 is technical and is used in the
proofs of Theorem 1 and Theorem 2 below. It
will be discussed in more details later in Section 5,
where the growth rates µ1 and µ2 are specified as
the Monod and Haldane law and numerical values
for the model coefficient are introduced.

Denote

β̄ =
1

αk4x̄2
=

k3
k4(si − s̄)

(8)

and let β− > 0 and β+ > 0 be arbitrary real num-
bers such that β̄ ∈ (β−, β+).

Following [2], [17], we extend the system (1)–(4)
by adding the differential equation

dβ

dt
= −C(β−β−)(β+−β)k4 µ2(s2)x2 (s− s̄), (9)

where C > 0 is a constant.
We consider the control system (1)–(4) and (9)

in the augmented state space (ζ, β) with ζ =
(s1, x1, s2, x2) and define the following continuous
feedback control law

κ1(ζ, β) := k4β µ2(s2) x2. (10)

Then the following theorem holds true (a similar
assertion can be found in [9] and [10]):
Theorem 1. Let us fix an arbitrary reference point
s̄ ∈ (0, si). Let Assumptions A1, A2, A3 and A4 be
satisfied. Then the feedback (10) stabilizes asymp-
totically the control system (1)–(4), (9) to the point
(ζ̄, β̄) for each starting point ζ0 = (s01, x

0
1, s

0
2, x

0
2) ∈

Ω0 with

s0 > (si − s̄) · ln
(

si

si − s0

)
, (11)

where s0 = s02 +
k2
k1

s01 and β0 ∈ (β−, β+).

Proof. Let us fix an arbitrary point ζ0 ∈ Ω0 and
a positive value u0 > 0 for the control. According
to Lemma 1 from [13] there exists time T > 0 such
that the value of the corresponding trajectory of
(1)–(4) for t = T belongs to the set Ω, i. e. the tra-
jectory of (1)–(4) starting from the point ζ0 enters
the set Ω after a finite time. For that reason we
are studying the control system (1)–(4) after this
moment of time, i. e. we assume that the starting
point belongs to the set Ω.

Let Σ denote the closed-loop system obtained
from (1)–(4) and (9) by substituting the control
variable u by the feedback κ1(ζ, β) and let

Ω̃ := Ω× (β−, β+),

where Ω is the closure of the set Ω. Then one can
directly check that Ω̃ is positively invariant (cf. [7])
with respect to the trajectories of Σ.

Define the following function

V (ζ, β) = (s−s̄+k3(x2−x̄2))
2 + Γ

∫ s

s̄

v−s̄

si−v
dv

+
1

C

∫ β

β̄

w − β̄

(w − β−)(β+ − w)
dw,

WSEAS TRANSACTIONS on SYSTEMS Neli S. Dimitrova, Mikhail I. Krastanov

E-ISSN: 2224-2678 246 Issue 7, Volume 11, July 2012



where the parameter Γ > 0 will be determined later.
Clearly, the values of this function are nonnegative.

In what follows we shall subdivide the proof of
the theorem in four steps for better clarity and read-
ability.

Step 1. There exists a number δ > 0 such that
V (s01, x

0
1, s

0
2, x

0
2, β

0) < V (s1, x1, s2, x2, β) for each

point (s1, x1, s2, x2, β) ∈ Ω̃ with 0 ≤ k2
k1

s1 + s2 ≤ δ.

It is straightforward to see that∫ s

s̄

v−s̄

si−v
dv = s̄− s− (si − s̄) · ln

(
si − s

si − s̄

)
.

If s0 satisfies the inequality (11), then there exists
ε > 0 such that∫ s0

s̄

v−s̄

si−v
dv + ε ≤

∫ 0

s̄

v−s̄

si−v
dv. (12)

The boundedness of the set Ω̃ implies the ex-
istence of a sufficiently large constant Γ > 0 such
that

(s0−s̄+k3(x
0
2−x̄2))

2+
1

C

∫ β0

β̄

(w − β̄) dw

(w −β−)(β+ −w)

< (−s̄+ k3(x2 − x̄2))
2+

1

C

∫ β

β̄

(w − β̄) dw

(w − β−)(β+ − w)
+ Γε

for each point (0, x1, 0, x2, β) ∈ Ω̃. Multiplying
both sides of (12) by Γ and adding to the last in-
equality, we obtain

V (s01, x
0
1, s

0
2, x

0
2, β

0) < V (0, x1, 0, x2, β).

The continuity of the function V implies the ex-
istence of δ > 0 such that

V (s01, x
0
1, s

0
2, x

0
2, β

0) < V (s1, x1, s2, x2, β) (13)

for each point (s1, x1, s2, x2, β) ∈ Ω̃ with 0 ≤
k2
k1

s1 + s2 ≤ δ; this proves Step 1.

Denote by V̇ (ζ, β) the Lie derivative of the func-
tion V with respect to the right-hand side of the
closed-loop system Σ at the point (ζ, β). Then it
is easy to see that for each point (ζ, β) ∈ Ω̃ with
ζ = (s1, x1, s2, x2) the following presentation holds
true:

V̇ (ζ, β) =

− κ1(ζ, β)

(
2+Γ

k3
k4β(si−s)(si−s̄))

)
(s−s̄)2

− 2(1 + α)k3 · κ1(ζ, β)(s− s̄)(x2 − x̄2)

− 2αk23 · κ1(ζ, β)(x2 − x̄2)
2.

The boundedness of the set Ω̃ implies the existence
of a sufficiently large constant Γ > 0 so that

V̇ (ζ, β) ≤ 0 for each point (ζ, β) ∈ Ω̃. (14)

In what follows we shall use a refinement of the
LaSalle invariance principle (cf. e. g. [15]) recently
obtained in [3] (cf. also [12] and [19], where sim-
ilar stabilizability problems are studied). First we
shall recall some notions. Let us denote by ϕ(t, ζ, β)
the value of the trajectory of the closed-loop sys-
tem Σ calculated at time t starting from the point
(ζ, β) ∈ Ω̃. The positive limit set (or ω-limit set)
of the solution ϕ(t, ζ, β) of the closed-loop system
Σ is defined as

L+(ζ, β) =
{
(ζ̃, β̃) : there exists a sequence

{tn} → +∞ with (ζ̃, β̃) = limtn→+∞ ϕ(tn, ζ, β)
}
.

Step 2. The ω-limit set L+(s01, x
0
1, s

0
2, x

0
2, β

0) be-
longs to the set

Ω̃2 :=

{
(s1, x1, s2, x̄2, β̄) ∈ Ω̃ :

k2
k1

s1 + s2 = s̄

}
.

According to the extension of the LaSalle invari-
ance principle [3], every solution of Σ starting from
a point of Ω̃ is defined on the interval [0,+∞) and
approaches the largest invariant set (with respect to
Σ) which is contained in one connected component
of the closure of the set, where the Lie derivative
V̇ of V with respect to the right-hand side of Σ is
equal to zero.

Let (s̃1, x̃1, s̃2, x̃2, β̃) be an arbitrary point from

the set L+(s01, x
0
1, s

0
2, x

0
2, β

0). We set s̃ :=
k2
k1

s̃1 + s̃2

and ζ̃ := (s̃1, x̃1, s̃2, x̃2).
If we assume that κ1(ζ̃, β̃) = 0, then the inequal-

ities (13) and (14) imply that s̃ > δ > 0, and hence
x̃2 = 0. But then there exists time T > 0 with
x2(t) <

1

αk4β− for each t ≥ T . For these values of

t the differential equation (4) for x2 becomes

d

dt
x2(t) = µ2(s2(t))(1− αk4β(t))x2(t) > 0.

So, 0 = x̃2 can not be a limit of x2(t) as t → ∞. The
obtained contradiction shows that κ1(ζ̃, β̃) ̸= 0.
This and the equality V̇ (ζ̃, β̃) = 0 imply x̃2 = x̄2,
s̃ = s̄ and β̃ = β̄. Hence L+(s01, x

0
1, s

0
2, x

0
2, β

0) is a
subset of the set Ω̃2 which is equivalent to

Ω̃2 =

{(
s1, x1, s̄−

k2
k1

s1, x̄2, β̄

)
∈ Ω̃

}
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and this proves Step 2.

Step 3. The ω-limit set L+(s01, x
0
1, s

0
2, x

0
2, β

0) co-
incides with the equilibrium point (ζ̄, β̄) of Σ.

One can directly check that the set Ω̃2 is invari-
ant with respect to the trajectories of Σ. Using (7),
(8) and (10), the dynamics of Σ on the set Ω̃2 can
be described by the following system

ds1
dt

=
1

α
χ(s1)(s

i
1 − s1)− k1µ1(s1)x1

dx1
dt

= (µ1(s1)− χ(s1))x1,

(15)

where χ(s1) := µ2

(
s̄− k2

k1
s1

)
. Taking into ac-

count that s̄ =
k2
k1

s̄1+ s̄2 and si1 = s̄1+αk1x̄1, (15)

can be rewritten as follows:

ds1
dt

= − 1

α
χ(s1) · (s1 − s̄1 + αk1(x1 − x̄1))

− k1 (µ1(s1)− χ(s1)) · x1
dx1
dt

= (µ1(s1)− χ(s1)) · x1.

Consider the function

W (ζ, β) = (s1 − s̄1 + αk1(x1 − x̄1))
2

+ α(1− α)k21(x1 − x̄1)
2.

Clearly, this function depends only on the variables
s1 and x1 and takes only nonnegative values; more-
over, for each point (s1, x1, s̄− k2

k1
s1, x̄2, β̄) from the

set Ω̃2, the following equality holds true:

Ẇ (s1, x1) =

− 2

α
χ(s1)(s1 − s̄1 + αk1(x1 − x̄1))

2

− 2(1− α)k1x1(s1 − s̄1)(µ1(s1)− χ(s1)).

(16)

We have

µ1(s1)− χ(s1) = µ1(s1)− µ2

(
s̄− k2

k1
s1

)
= µ1(s1)− µ2

(
s̄2 − (s1 − s̄1)

k2
k1

)
= µ1(s̄1) +

∫ s1

s̄1

µ′
1(θ) dθ

−µ2 (s̄2) +
k2
k1

∫ s1

s̄1

µ′
2

(
s̄2 − (θ − s̄1)

k2
k1

)
dθ

=

∫ s1

s̄1

(
µ′
1(θ) +

k2
k1

µ′
2

(
s̄2 − (θ − s̄1)

k2
k1

))
dθ,

and by means of Assumption A3 it follows that

(s1−s̄1)

∫ s1

s̄1

(
µ′
1(θ)+

k2
k1

µ′
2

(̄
s2−(θ−s̄1)

k2
k1

))
dθ≥0.

From this inequality and from (16) we obtain that

Ẇ (s1, x1) ≤ 0 (17)

for each point (s1, x1, s̄− k2
k1
s1, x̄2, β̄) ∈ Ω̃2.

Let us fix an arbitrary point (ζ0, β0) from Ω̃
with ζ0 = (s01, x

0
1, s

0
2, x

0
2). The invariance of the

bounded set Ω̃ with respect to the trajectories
of Σ implies that the ω-limit set L+(ζ0, β0) is a
nonempty compact connected invariant set. More-
over, it follows from the LaSalle invariance principle
that L+(ζ0, β0) is a subset of Ω̃2. Using (17) it is
possible to obtain a better estimate of the location
of L+(ζ0, β0). Namely, Theorem 6 from [3] implies
that L+(ζ0, β0) is contained in one connected com-
ponent of the set

L∞ :=
{
(s1, x1, s̄− k2

k1
s1, x̄2, β̄) ∈ Ω̃2 :

Ẇ (s1, x1, s̄− k2
k1
s1, x̄2, β̄) = 0

}
.

Let (ζ̃, β̃) be an arbitrary point from the set
L+(ζ0, β0), where ζ̃ = (s̃1, x̃1, s̃2, x̃2). Then the fol-
lowing two cases are possible: (i) s̃1 = 0 and x̃1 = 0;
(ii) s̃1 = s̄1 and x̃1 = x̄1.

Let us assume that case (i) holds true. Then
lim
t→∞

χ(s1(t)) = 0, and Assumption A1 implies that

lim
t→∞

s1(t) =
k1
k2

s̄. So, there exist γ > 0 and T > 0

such that µ1(s1(t)) − χ(s1(t)) ≥ γ for each t ≥ T .
For these values of t the differential equation for the
state variable x1 in (15) implies that

d

dt
x1(t) = (µ1(s1(t))− χ(s1(t)))x1(t) ≥ γx1(t).

Hence x1(t) ≥ eγ(t−T )x1(T ) > 0 for each t ∈ [T,∞)
and x1(t) can not tend to zero as t → ∞. The
obtained contradiction leads to the existence of a
constant χmin > 0 such that χ(s1(t)) ≥ χmin for
each t ≥ 0. Then Lemma 1 from [13] implies the
existence of xmin

1 > 0 and smin
1 > 0 such that

x1(t) ≥ xmin
1 > 0 and s1(t) ≥ smin

1 > 0 for
each t > 0. So we obtain that case (i) is im-
possible. Hence the case (ii) is fulfilled. From
here it follows that L∞ = {(ζ̄, β̄)}, and therefore
L+(ζ0, β0) = {(ζ̄, β̄)}.

Step 4. The point (ζ̄, β̄) is a Lyapunov stable
equilibrium of Σ.

Let ε > 0 be arbitrary real number and
(s1, x1, s̄ − k2

k1
s1, x̄2, β̄) be an arbitrary point from

the set Ω̃2. Assume that W (s1, x1, s̄− k2
k1
s1, x̄2, β̄) =

ε. Then the inequalities (14) and (17), the conti-
nuity of the function W and of the right-hand side
of the closed-loop system Σ imply the existence of
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ε̃ with 0 < ε̃ < ε, such that the Lie derivative
Ẇ (s1, x1, s2, x2, β) of the function W with respect
to Σ at the point (s1, x1, s2, x2, β) is negative when-
ever V (s1, x1, s2, x2, β) ≤ ε̃. Let us choose an arbi-
trary sufficiently small positive real number ε > 0,
determine as above the number ε̃ with 0 < ε̃ < ε
and define the set

K(ε) =
{
(s1, x1, s2, x2, β) ∈ Ω̃ :

W (s1, x1, s̄− k2
k1
s1, x̄2, β̄) ≤ ε

}∩{
(s1, x1, s2, x2, β) ∈ Ω̃ : V (s1, x1, s2, x2, β)≤ ε̃

}
.

Using the definitions of V (ζ, β) and W (s1, x1) one
can directly check that there exists a constant ϱ > 0
such that the ball Bϱ

√
ε(ζ̄, β̄) centered at the point

(ζ̄, β̄) with radius ϱ
√
ε contains the set K(ε). More-

over, inequalities (14) and (17) imply that the set
K(ε) is invariant with respect to the trajectories of
Σ. This shows that the point (ζ̄, β̄) is a Lyapunov
stable equilibrium point for the closed-loop system
Σ and completes the proof of the theorem. �

4 Asymptotic Stabilization Based
on State Feedback Control Law
Consider the control system (1)–(4) in the state
space ζ = (s1, x1, s2, x2).

Define si :=
k2
k1

si1 + si2 and let the following as-

sumption be satisfied:

Assumption A5. Lower bounds si− and k−4 for
the values of si and k4, as well as an upper bound
k+3 for the value of k3 are known.

Define the following feedback control law:

κ2(ζ) = β k4 µ2(s2) x2

with β ∈
(

k+3
si− · k−4

, +∞
)
.

(18)

Denote again by Σ the closed-loop system ob-
tained from (1)–(4) by substituting the control vari-
able u by the feedback κ2(ζ) from (18).

Choose some β ∈
(

k+3
si− · k−4

, +∞
)

and let s̄ :=

si− k3
βk4

; obviously, s̄ belongs to the interval (0, si).

Find s̄1 according to Assumption A3 and define

s̄2 = s̄− k2
k1

s̄1, x̄1 =
si1 − s̄1
αk1

, x̄2 =
1

αβk4
. (19)

It is straightforward to see that the point

p̄ := (s̄1, x̄1, s̄2, x̄2)

is an equilibrium point for Σ. We shall prove below
that the feedback law (18) asymptotically stabilizes
the closed-loop system to p̄ (cf. [11], where the same
assertion and an extremum seeking algorithm are
presented).

Theorem 2. Let Assumptions A1, A3, A4 and
A5 be satisfied. Let us fix an arbitrary number

β ∈
(

k+3
si− · k−4

,+∞
)

and let p̄ = (s̄1, x̄1, s̄2, x̄2)

be the corresponding equilibrium point. Then the
feedback control law κ2(·) defined by (18) stabi-
lizes asymptotically the control system (1)–(4) to
the point p̄ for each starting point ζ0 from Ω0.

The Proof follows the main steps in the proof of
Theorem 1.

Similar arguments as in the beginning of the
proof of Theorem 1 show that we can consider the
control system (1)–(4) only in the set Ω.

Denote s :=
k2
k1

s1 + s2. Then it is not difficult

to see that the following ordinary differential equa-
tions are satisfied:

ds

dt
= −βk4µ2(s2)x2(s− s̄)

dx2
dt

= −αβk4µ2(s2)x2(x2 − x̄2).

(20)

Integrating the equations (20), one obtains

s(t) = s̄+ (s(0)− s̄)e
−

∫ t

0
βk4µ2(s2(τ))x2(τ)dτ

and

x2(t) =

x̄2 + (x2(0)− x̄2)e
−

∫ t

0
αβk4µ2(s2(τ))x2(τ)dτ

Since the integrands are strictly positive, we have
that for each t > 0 the following inequalities hold
true

max{s(0), s̄} ≥ s(t) ≥ min{s(0), s̄} > 0 (21)

and

max{x2(0), x̄2} ≥ x2(t) ≥ min{x2(0), x̄2} > 0.
(22)

Define the function

V (ζ) = (s− s̄)2 + (x2 − x̄2)
2.

Clearly, the values of this function are nonnegative.
If we denote by V̇ (ζ) the Lie derivative of V with
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respect to the right-hand side of (20) then for each
point ζ of Ω,

V̇ (ζ) = −βk4µ2(s2)x2(s− s̄)2

− αβk4µ2(s2)x2(x2 − x̄2)
2 ≤ 0.

Applying LaSalle’s invariance principle (cf. [15]),
it follows that every solution of Σ starting from a
point of Ω is defined in the interval [0,+∞) and
approaches the largest invariant set with respect to
Σ, which is contained in the set Ω∞, where Ω∞ is
the closure of the set Ω ∩ Ω2. Taking into account
the estimates (21) and (22), the dynamics of Σ on
Ω∞ can be described in the following way

ds1
dt

=
1

α
χ(s1)(s

i
1 − s1)− k1µ1(s1)x1

dx1
dt

= (µ1(s1)− χ(s1))x1,

(23)

where χ(s1) := µ2

(
s̄− k2

k1
s1

)
(remind that s̄ :=

si − k3
βk4

). According to (19) we have that s̄ =

k2
k1

s̄1 + s̄2 and si1 = s̄1 + αk1x̄1. Then (23) can be

written as follows:

ds1
dt

= − 1

α
χ(s1) · (s1 − s̄1 + αk1(x1 − x̄1))

− k1 (µ1(s1)− χ(s1)) · x1
dx1
dt

= (µ1(s1)− χ(s1)) · x1.

Consider the function

W (s1, x1) = (s1 − s̄1 + αk1(x1 − x̄1))
2

+ α(1− α)k21(x1 − x̄1)
2.

(24)

This function takes nonnegative values. It
is straightforward to see that for each point(
s1, x1, s̄− k2

k1
s1, x̄2

)
∈ Ω∞,

Ẇ (s1, x1) = − 2

α
χ(s1)(s1 − s̄1 + αk1(x1 − x̄1))

2

− 2(1− α)k1x1(s1 − s̄1)(µ1(s1)− χ(s1)).

Assumptions A3 and A4 imply

µ1(s1)−χ(s1) = µ1(s1)−µ2

(
s̄− k2

k1
s1

)

=

∫ s1

s̄1

(
µ′
1(θ)+

k2
k1

µ′
2

(
s̄2−(θ−s̄1)

k2
k1

))
dθ,

and therefore
Ẇ (s1, x1) ≤ 0

for each point
(
s1, x1, s̄−

k2
k1

s1, x̄2

)
from Ω∞.

To complete the proof we can use the same ar-
guments as in Step 4 of Theorem 1. �

5 Numerical Simulation and Com-
parison Results

In the computer simulation, we consider for
µ1(s1) and µ2(s2) the Monod and the Haldane
model functions for the specific growth rates, which
are used in the original model [1], [5], [13], [14]:

µ1(s1) =
m1s1

ks1 + s1
,

µ2(s2) =
m2s2

ks2 + s2 +

(
s2
kI

)2 .
(25)

Obviously, µ1(s1) and µ2(s2) satisfy Assumption
A1: µ1(s1) and µ2(s2) are continuously differen-
tiable and bounded: µ1(s1) is monotone increasing
and µ1(s1) < m1 for all s1 ≥ 0; µ2(s2) takes its
maximum at the point sm2 = kI

√
ks2 .

Simple derivative calculations show that if s̄ is
chosen such that 0 < s̄ ≤ sm2 then µ′

2

(
s̄− k2

k1
s1

)
≥

0 holds true thus Assumption A4 is satisfied. More-
over, if the point s̄ is sufficiently small, then As-
sumptions A3 and A4 are simultaneously satisfied.

For practical applications, the condition (11)
in Theorem 1 can be simplified. Remember

that s0 = s02 +
k2
k1

s01 and (s01, x
0
1, s

0
2, x

0
2) is a

starting point from Ω0. Let us choose s0 :=
γ si with γ ∈ (0, 1). Straightforward calcula-
tions deliver that (11) is equivalent with γ >(
1− s̄

si

)
ln

(
1 +

γ

1− γ

)
; moreover, if we choose γ

such that γ >

(
1− sm2

si

)
ln

(
1 +

γ

1− γ

)
, then (11)

will also be fulfilled for any 0 < s̄ ≤ sm2 .

Usually the formulation of the specific growth
rates is based on experimental results, and therefore
it is not possible to have an exact analytic form of
these functions, but only some quantitative bounds,
see the figures below.
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Assume that we know bounds for µ1(s1) and
µ2(s2), i. e.

µj(sj) ∈ [µj(sj)] = [µ−
j (sj), µ

+
j (sj)] for all sj ≥ 0,

j = 1, 2.

This uncertainty can be simulated by assuming
in (25) that instead of exact values for the kinetic
coefficients m1, ks1 , m2, ks2 and kI we have com-
pact intervals for them:

m1 ∈ [m1] = [m−
1 ,m

+
1 ], ks1 ∈ [ks1 ] = [k−s1 , k

+
s1 ]

m2 ∈ [m2] = [m−
2 ,m

+
2 ], ks2 ∈ [ks2 ] = [k−s2 , k

+
s2 ],

kI ∈ [kI ] = [k−I , k
+
I ].

Then

µ−
1 (s1) =

m−
1 s1

k+s1 + s1
, µ+

1 (s1) =
m+

1 s1

k−s1 + s1
,

µ−
2 (s2) =

m−
2 s2

k+s2 + s2 +
(

s2
k−I

)2 ,

µ+
2 (s2) =

m+
2 s2

k−s2 + s2 +
(

s2
k+I

)2 .

Any µj(sj) ∈ [µj(sj)], j = 1, 2, satisfies Assump-
tion 1; it also follows that there exist intervals for

the kinetic coefficients, such that Assumption 4 is
satisfied for any µj(sj) ∈ [µj(sj)], j = 1, 2. Such
intervals are for example the following:

[m1] = [1.2, 1.4], [ks1 ] = [6.5, 7.2],
[m2] = [0.64, 0.84], [ks2 ] = [9, 10.28],
[kI ] = [15, 17].

To simulate Assumption A5 we assume intervals for
the coefficients kj to be given, i. e. kj ∈ [kj ] =
[k−j , k

+
j ], j = 1, 2, 3, 4. Such numerical intervals are

[k1] = [9.5, 11.5], [k2] = [27.6, 29.6],
[k3] = [1064, 1084], [k4] = [650, 700].

All above intervals are chosen to enclose the nu-
merical coefficients values derived by experimental
measurements [1]; the values α = 0.5, si1 = 7.5,
si2 = 75 are also taken from [1]. Further, we as-
sume that for any value k1 ∈ [k1] and k2 ∈ [k2]
we have measurements k2

k1
s1+ s2 for BOD, which is

needed in Theorem 1.
The simulation process is carried out in the fol-

lowing way. At the initial time t0 = 0 we take
random values for the coefficients from the corre-
sponding intervals. To compare the effectiveness
of the two stabilizing approaches we first take some
operating point s̄ (see (6)) and compute the equilib-
rium point ζ̄. By choosing an appropriate value for
β from the corresponding interval (see (18)) we find
an equilibrium point p̄, such that ζ̄ = p̄. Note that
the feedback laws κ1(·) and κ2(·) can be presented
(see (5)) as κ1(t) = β(t) ·Q(t), κ2(t) = β ·Q(t). The
difference lies in the choice of β: according to Theo-
rem 1, β(t) is a solution of the differential equation
(9); according to Theorem 2, β is a positive con-

stant within β ∈
(

k+3
si− · k−4

,+∞
)

.

The next figures (1a) to (1f) show time profiles
of the phase variables s1(t), x1(t), s2(t), x2(t), as
well as of Q(t) and of the feedback κ1(t); figures
(2a) to (2f) show the time evolution of the same
phase variables, of Q(t) and the feedback κ2(t). The
horizontal dash-lines pass through the correspond-
ing components of the equilibrium points ζ̄ = p̄ re-
spectively, the values of Q(s̄2, x̄2) and the feedbacks
κ1(ζ̄, β̄) and κ2(p̄).

The numerical simulation and the graphic vi-
sualization are carried out in the computer alge-
bra system Maple 13. A procedure for solving
the closed-loop system of ordinary differential equa-
tions was designed; thereby the computations were
stopped when the difference between the computed
value of the solution and the value of the operating
point became less than ϵ = 10−7.
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Time evolution of: (1a) s1(t), (1b) x1(t) and (1c)
s2(t) using the adaptive asymptotic stabilization
approach.

Time evolution of: (2a) s1(t), (2b) x1(t) and (2c)
s2(t) using the non-adaptive asymptotic stabiliza-
tion approach.
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Time evolution of: (1d) x2(t), (1e) Q(t) and (1f)
κ1(t) using the adaptive asymptotic stabilization
approach.

Time evolution of: (2d) x2(t), (2e) Q(t) and (2f)
κ2(t) using the non-adaptive asymptotic stabiliza-
tion approach.
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It is well seen from the figures that (i) both feed-
back laws stabilize globally the closed-loop system;
(ii) the adaptive stabilization requires more time to
approach the operating point than the non-adaptive
stabilizer; (iii) there are oscillations of the solutions
in the case of adaptive stabilization.

6 Conclusion

The present paper is devoted to the asymptotic
stabilization of a four-dimensional nonlinear dy-
namic system, which models anaerobic degradation
of organic wastes. Two approaches for global stabi-
lization are presented. The first approach is based
on adaptive feedback law; the second one uses a
state feedback control law. To prove the stabiliz-
abilty of the control system, explicit Lyapunov-like
functions are constructed and a recent extension of
the LaSalle invariance principle is used. The ro-
bustness of the proposed feedback laws is demon-
strated in a computer simulation process, assum-
ing that the model parameters are uncertain but
bounded within compact intervals.
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